Olig1 and Olig2 promote oligodendrocyte differentiation of neural stem cells in adult mice injured by EAE
نویسندگان
چکیده
Investigating neural stem cell plasticity in the hippocampal niche, we demonstrate that retroviral forced expression of Mash1 (Mammalian Achaete-Scute Homolog 1), Olig1 (Oligodendrocyte transcription factor 1), and Olig2 (Oligodendrocyte transcription factor 2) genes, transcription factors involved in enhanced oligodendrogenesis, can contribute to directing the differentiation of adult subventricular zone neural stem cells to functional oligodendrocytes. We found that Mash1, Olig1 and Olig2 all induced oligodendrocyte differentiation. However, Olig1 and Olig2 induction resulted in an elevated number of generated oligodendrocytes without a significant production of other cell lineages, unlike Mash1. These newly differentiated cells are also capable of migration and possible myelination, showing that targeting oligodendrocyte production and possible remyelination is a viable therapeutic strategy for restoration of neuronal function.
منابع مشابه
Zfp488 promotes oligodendrocyte differentiation of neural progenitor cells in adult mice after demyelination
Basic helix-loop-helix transcription factors Olig1 and Olig2 critically regulate oligodendrocyte development. Initially identified as a downstream effector of Olig1, an oligodendrocyte-specific zinc finger transcription repressor, Zfp488, cooperates with Olig2 function. Although Zfp488 is required for oligodendrocyte precursor formation and differentiation during embryonic development, its role...
متن کاملThe enhancing effect of electromagnetic field on the expression of Oligodendrocyte transcription factor 1 and 2 (Olig1/2) in the mice cerebral cortex
Olig1 and Olig2, two transcription factors, play regulatory function in the differentiation and specification of oligodendrocyte progenitor cells (OPCs). In this study the effects of electromagnetic fields (EMF) on total protein concentration ( TPC ) and Olig1 and Olig2 expression in the cerebral cortex of mouse was examined. Twenty-one Balb/c mice were separated into three groups: control, EMF...
متن کاملEnhancing oligodendrocyte differentiation by transient transcription activation via DNA nanoparticle-mediated transfection.
Current approaches to derive oligodendrocytes from human pluripotent stem cells (hPSCs) need extended exposure of hPSCs to growth factors and small molecules, which limits their clinical application because of the lengthy culture time required and low generation efficiency of myelinating oligodendrocytes. Compared to extrinsic growth factors and molecules, oligodendrocyte differentiation and ma...
متن کاملInterplay between H1 and HMGN epigenetically regulates OLIG1&2 expression and oligodendrocyte differentiation
An interplay between the nucleosome binding proteins H1 and HMGN is known to affect chromatin dynamics, but the biological significance of this interplay is still not clear. We find that during embryonic stem cell differentiation loss of HMGNs leads to down regulation of genes involved in neural differentiation, and that the transcription factor OLIG2 is a central node in the affected pathway. ...
متن کاملEffect of catalpol on remyelination through experimental autoimmune encephalomyelitis acting to promote Olig1 and Olig2 expressions in mice
BACKGROUND Multiple sclerosis (MS) as an autoimmune disorder is a common disease occurring in central nervous system (CNS) and the remyelination plays a pivotal role in the alleviating neurological impairment in the MS. Catalpol, an effective component extracted from the Chinese herb Radix Rehmanniae, which has been proved protective in cerebral diseases. METHODS To determine the protective e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013